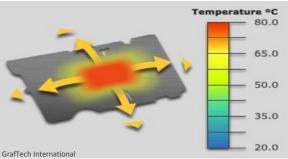


Efforts Toward a Board Level Holistic Thermal and EMI Solution for Mobile Electronic Devices

Gene Pruss and Jason Strader May 2, 2017

Outline

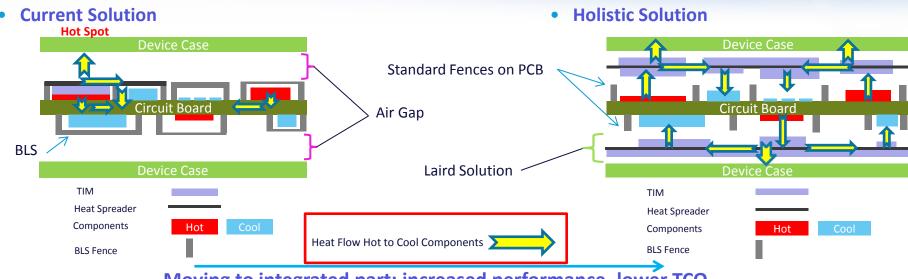
- Market and drivers
- Current and proposed solutions
- Case studies smartphone platform
 - Benchmarking
 - CPU performance
 - Thermal and EMI measurements
- Summary


Market and Drivers

- Target market: Portable electronics/wearables, trend towards passive cooling
- Problem: Device performance, design, customer acceptance all limited by heat generation
- Goal: Increase CPU performance (reduce throttling) while meeting industry temperature constraints and providing design flexibility
 - Max surface temperature should be 45°C or less with a 5°C delta across the surface
 - Minimal use of TIMS in smartphones and wearables

Traditional methods to deal with waste heat in electronics

- Remove heat from the top
 - Heat sinks
- Spread heat and remove from device
 - Graphite
- Move heat to another location
 - Heat pipes

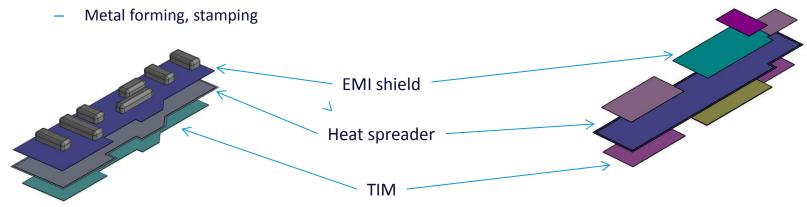


Current Solution vs. Proposed Solution

Transient Cooling - Take advantage of heat capacity of cooler components & spread the heat at the board level

Moving to integrated part: increased performance, lower TCO

- Current solution utilizes air gaps
- TIMs limited
- BLS contain heat in air gaps
- Copper heat spreader / lid


- Holistic solution provides combines functions
- Fences remain on PCB
- EMI shielding intact
- TIMs selected to distribute heat

Integrated Capability

Utilize specific materials to enable:

- Heat Transfer
 - Thermally conductive gap fillers, phase change TIMs, and greases, thermal insulators, heat storage materials
- Heat Spreading
 - High thermal conductivity metal, graphite
- EMI containment
 - Shielding and absorbing materials
- Structural

Back side solution (PMIC)

Front side solution (CPU)

Case Studies – Smartphones

Goals:

- Increase CPU performance (reduce throttling) while meeting industry temperature constraints
- Provide multiple functions in one part
- Provide a flexible design enable optimization of key parameters
- Based on other trials with other devices (WPC, tablets, etc.)
 - Custom solution for each device
 - Reduce weight
 - Reduce power consumption

Case Studies Flagship (2016)

	• •	•	
BODY	Dimensions	149.4 x 73.9 x 7.7 mm (5.88 x 2.91 x 0.30 in)	
	<u>Weight</u>	159 g (5.61 oz.)	
	<u>Build</u>	Aluminum back panel – modular design	
DISPLAY	<u>Type</u>	IPS LCD capacitive touchscreen	
	Size	5.3 inches	
PLATFORM	Chipset	Qualcomm MSM8996 Snapdragon 820	
	CPU	Quad-core (2x2.15 GHz & 2x1.6 GHz)	

High Mid Range (2016)

BODY	<u>Dimensions</u>	161.7 x 80.9 x 7.4 mm (6.37 x 3.19 x 0.29 in)	
	<u>Weight</u>	200 g (7.05 oz.)	
	<u>Build</u>	Corning Gorilla Glass 4 back panel	
DISPLAY	<u>Type</u>	Super AMOLED capacitive touchscreen	
	<u>Size</u>	6.0 inches	
PLATFORM	Chipset	Qualcomm MSM8976 Snapdragon 652	
	CPU	Octa-core (4x1.8 GHz & 4x1.2 GHz)	

Test Methods

CPU Stress Test

- Application CPURun is a tool to consume CPU resources at a constant usage rate.
- Typical test length was 30 minutes, minimum

IR Test Configuration

- FLIR A300 IR Camera
- Smartphone holder positioned to hold the phone vertically

Thermocouple Temperature Measurement

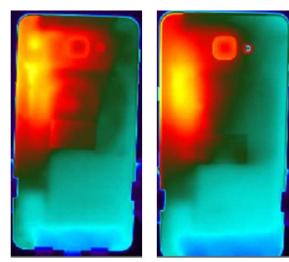
- Type T thermocouples utilized
- Positioned above the hot spots determined from the IR images on the screen and back sides of stock phone

Holistic Solution Back Side – Mid-Range Smartphone

Stock

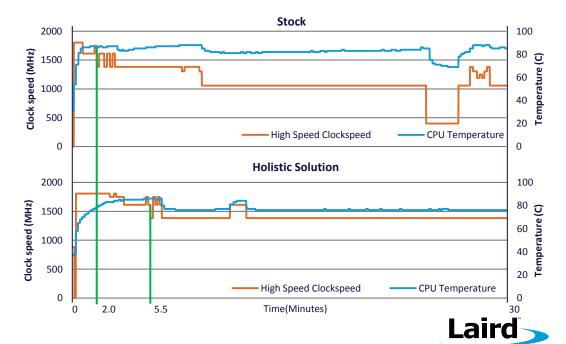
Holistic Solution

- Analyses were conducted to determine the Holistic Solution configuration and thickness based on measured air gaps
- The back side solution is comprised of TIMs, heat spreading materials and conductive adhesive to form a complete thermal and EMI solution
- The base heat spreading material has an additional adhesive material that interfaces with the top of the fences to complete the EMI shield
- Image is showing the prototype installation
 - The thermal grease that interface the ICs with the heat spreader are shown on the underside of the HS
 - The TIMs that interface the heat spreader with the mid plate are shown in place on the heat spreader



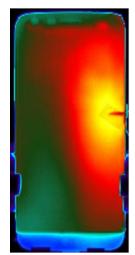
Case Study Mid-Range Smartphone – Performance Summary

Criteria	Stock (30 min)	Holistic Solution (30 min)
Average high speed CPU clock speed (MHz)	1125.77	1457.42 (30% increase)
Average CPU temperature (°C)	82.90	77.42 (5.5°C decrease)
Maximum surface temperature (°C)	44.7	45.6 (< 1°C increase)

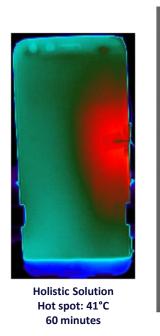

Stock Hot spot: 44.7°C ΔT: 4.9°C

Holistic Solution Hot spot: 45.6°C ΔΤ: 4.3°C

39.7


32.9

30.7



Case Study Flagship Smartphone – Performance Summary

Criteria	Stock (30 min)	Holistic Solution (60 min)
Average high speed CPU clock speed (MHz)	1979.2	2134.4 (7.8% increase)
Average CPU temperature (°C)	69.9	56.2 (13.7°C decrease)
Maximum surface temperature (°C)	44.0	41.0 (3.0°C decrease)

Stock Hot spot: 44°C 30 minutes

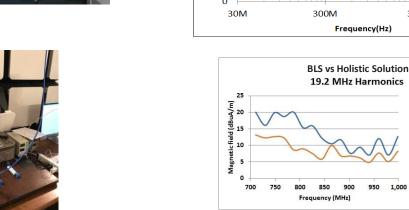
Pre-Teardown, Stock 2500 80 Clock Speed (MHz) 2000 1500 1000 500 High Speed Core Frequency **CPU Temperature** 30 Time (minutes) **Holistic Solution** 2500 80 Clock Speed (MHz) 2000 Temperature (C) 1500 1000 20 500 High Speed Core Frequency - CPU Temperature 60

Time (minutes)

Case Study Smartphone – EMI Performance Summary

High end, mid-range model: Compare EMI performance of BLS lid vs Holistic solution

Far Field


SE similar to conventional BLS > 40 dB @ 1.5GHz

Near Field

SE similar to conventional BLS > 20 dB

70

50

10

Shielding Effectiveness(dB)

✓ Shielding Effectiveness Similar in Both Near and Far Field Tests

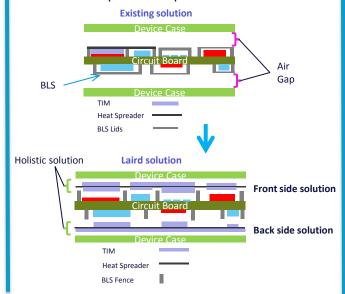
18G

Shielding Effectiveness Tested I.A.W. MIL-DTL-83528C (Modified)

Holistic Solution

3G

Summary


Improved Device Performance

- Mid-range Smartphone
 - High speed core freq. increased performance > 30%
 - CPU Temp unaffected
- Flagship Smartphone
 - CPU temperature reduced by > 16°C
 - CPU performance increased 8%
 - Device skin temperature reduced > 4°C
- EMI Shielding Equivalent

Reduce part #s & manufacturing cost

- Integrates multiple EMI & thermal products
- Pick and place complete solution

Extreme flexibility in solutions

- Vast portfolio of market leading TIMs, heat spreaders, EMI shielding and absorbing materials
- Leverage products in development pipeline
- Optimize performance

Smart Technology. Delivered.™